The Keck Interferometer (Nuller)

Gene Serabyn

Jet Propulsion Laboratory / California Institute of Technology

TPF Expo

Pasadena, CA

14 October, 2003

The People Involved

- M. Colavita
- M. Creech-Eakman
- S. Crawford
- J. Geis
- G. Hardy
- S. Martin
- B. Mennesson
- M. Shao
- M. Swain

- J. Garcia
- R. Johnson
- E. Hovland
- R. Ligon
- R. Smythe
- A. Tummielo
- G. Vasisht
- G. van Belle
- P. Wizinowich

Outline

- The Keck Interferometer
- Keck Science → Nulling Science
- Symmetric Nullers
- The Keck Interferometer Nuller

Keck Interferometer

- Interferometry with the two 10-m Keck telescopes
- NASA-funded joint project between JPL and CARA
- Broad range of science capabilities
- Precursor interferometry work to SIM and TPF

Key Features

- Michelson combination among two 10-m Kecks on 85 m baseline
- Telescope phasing with adaptive optics (S = 98% at N band) and fast tip/tilt correction
- Interferometer cophasing with NIR fringe tracking & active delay lines
 - Dual-star/dual-subaperture feeds at each telescope
- Back-end instruments:
 - Two-way beam combiners at 1.5--2.4 μm for fringe tracking (cophasing), V² observations (potentially astrometry & imaging)
 - Nulling beam combiner at 10 μm
 - Two-way combiner for differential phase at 2-4 μm
 - Imaging combiner at 1.6--5 μm

Keck Interferometer Science

- Science with the two Kecks
 - Measurement of exozodiacal dust using nulling
 - Detection of hot Jupiters using differential phase
 - High sensitivity parametric imaging
- Science with the Kecks and the proposed outriggers
 - Astrometric search for planets
 - Imaging with 4, 5, or 6-element array

Keck V² Results

- Binary previously observed with PTI (known orbit): 75 Cnc (HD 78418) in partly cloudy weather
- In good weather, rms V² is about 5%
- Have locked fringes to K=8.6 stars with 2 ms scan
- Successful operation with 5 ms scan
- Papers on HL Tau and NGC 4151 out

Detection of Hot Jupiters with Differential Phase

Astrometric Detection of Exoplanets

- Science objective
 - Survey 100's of nearby stars for planets to Uranus mass
 - Would use proposed outrigger telescopes for long-term survey
- Proposed approach
 - High-accuracy narrow-angle astrometry
 - Orthogonal >100m baselines; dual-star feeds
 - 30 μas per hour accuracy for differential astrometry

Measurement of Exozodiacal Dust with Nulling

- Characterization of the exozodiacal emission around nearby stars as a preliminary to TPF
 - Goal: detection of a 10-solar-system equivalent zodiacal dust disk (10⁻³ of star)
- Features of the measurement
 - Strong light from central star
 - Relatively weak exozodiacal signal
 - Strong 10-μm background
- Two nuller scales at 10 μm
 - Aperture:λ / diameter = 400 mas
 - Interferometer:
 λ / baseline = 25 mas

1AU radius disk at 10 pc

Stellar null depths vs. wavelength, and required phase accuracy

Nulling a G2 star on 85 m baseline

To achieve the baseline-limited null, require: $\sigma_x < b\theta_d/4$

Sensitivity of the Keck Nuller to Exozodiacal Light

			total flux		KI fluxes		Zodis for SNR = 5			
	star	model	uJy	Edge-On	Face-On	Edge-On	noise in 5 hrs:		17	uJy
Test				perp		par				
1	G2 @ 10pc	a) full zodi	120.0	47.7	45.6	36.4	1.8	1.9	2.3	
2	(1 L _∗)	b) cutoff at 1AU	90.0	38.2	39.2	27.0	2.2	2.2	3.2	
3		c) hole at 1AU	32.0	9.4	6.4	9.4	9.0	13.2	9.0	

Hot planets with nulling from the ground?

- First fringe maximum: $\theta_{\text{max}} = \lambda/2b$
- Equilibrium temp. there: $T \approx 300 (b_{10}/d_{10}\lambda_{10})^{1/2}$
- Orbital Period: $P \propto b^{-1.5}$
- Short periods and wavelengths will help!

How to null? - Symmetric Nullers

- Goal: completely symmetric, broadband, dual-polarization nuller
- Elimination of residual asymmetries:
 - Unbalanced mirror reflections
 - Asymmetric beamsplitter coating passes
 - Unequal substrate passes
 - Unequal numbers of antireflection coating passes
- Dual-polarization operation
- Broadband operation
- Separation of Nuller Functions:
 - Field reversal
 - Phase shifting
 - Beam combination

Reversed double-pass beamsplitters allow for perfect subtraction

- Generally $r \neq t$, so single pass beamsplitters are typically not symmetric
- Double pass: generally rt r't » 0 but not = 0, but rt' rt = 0 identically.
- Reversed pair of beamsplitters makes for a perfectly symmetric, constructive beam combiner
- Needs to be preceded by a symmetric field reversal
- Reversed beamsplitter pairs provide constructive interference, independent of polarization, wavelength, and angle-of-incidence

Perfectly-symmetric, constructive 2-beam combiners

The Keck/TPF mid-infrared MMZ nullers

Field-reversal stages:

Right Angle Periscopes

Extra Focus

Dielectric Phase

Half Wave Plates

Grating Phase

Pancharatnam Phase

- Not all fully symmetric, some are lossy; some work with single-polarization, but all could be used
- The Keck Nuller will use dielectric phase plates to counteract the atmosphere anyway, so they will be used for the nulling field flip also.

Field Flippers in the lab

- Periscopes
- Dielectric prisms

The Keck mid-infrared MMZ nullers

- Field reversal by dielectric plates to correct atmosphere as well
- Beam combination with MMZ

Lab results

- Sources: CO₂ laser and thermal filament
- Room temperature optics
- Dielectric plate field flip and MMZ nuller
- Detector so far: single-pixel LN₂ MCT
- Single-pixel detector as the spatial filter
- Null optimization by equalization of symmetric off-center fringes
- Symmetric beams created by reverse pass through nuller
- No intensity control needed yet

<u>Dual Polarization non-stabilized White Light Nulls</u> <u>on the Keck Nuller Beam Combiner</u> (March 24-25, 2003)

29% bandwidth filter

Half max points: 9.2-12.35 µm

6000:1 "steady state"

<u>Dual Polarization non-stabilized White Light Nulls</u> <u>on the Keck Nuller Beam Combiner</u> (March 24-25, 2003)

Half max points: 9.7-11.65 microns

> 10,000:1 for short times

CO₂ laser nulling (TPF nuller) and summary

- 29% BW; no polarizers in beam, WL nulls of > 6,000:1 achieved
- 18% BW, no polarizers in beam,
 WL nulls of > 10,000:1 achieved
- Keck WL lab performance goal is 10,000:1 for about 20% BW
- CO₂ laser nulled to > 900,000:1 with transients past 1,000,000:1, also with no polarizers in beam

Keck System Architecture: Dual-baseline Nulling

- Need to remove both star and thermal background
- Dual-baseline nulling
 - Send two beams to basement from two sup-apertures on each telescope
- Null star on each of two K1-K2 baselines
- Perform standard OPD-scan interferometry on the two nulled outputs
 - Use rapid OPD scan between the two nulled beams to measure exozodi fringe
- Hardware-wise, very similar to some proposed TPF approaches

Cophasing Architecture and Metrology

Keck Nuller Optics Layout

Keck nulling beam-combiner (2 nullers and 2 cross combiners)

MIR KALI Camera

- 4 input beams
- Cold beam apertures
- Cold Pinholes
- Pupil imaging lens
- Direct view prisms
- 128x128 detector array

Nulling I&T Lab Layout

Keck Project Status and Near-Term Schedule

- Visibility mode functional at Keck
- First pair of visibility-based astronomy papers in ApJ
- Nulling breadboard functional at JPL
- Nullers integrated with fast delay lines & switchyard optics
- Real-time software work proceeding; fringe tracker integration next
- MIR camera assembled; first camera cool-down this week
- The nuller is scheduled to ship to Keck near the end of this year
- Differential Phase next priority